Оглавление
Автор, Demoscene Passivist, говорит, что для создания демо с процедурно генерируемыми фрактальными ландшафтами потребовалось около двух месяцев. Фракталы можно использовать даже неосознанно. На фото выше изображен фрагмент купола иранской мечети. А здесь вы найдете множество фотографий потолков школ, культурных и религиозных сооружений в Иране, которые демонстрируют невероятно сложные фрактальные рельефы и мозаики, декорирующие изысканные архитектурные элементы. Сейчас фракталы используются в новом поколении спутниковой связи, в устройствах IoT и других проектах приема, передачи и преобразования радиоволн.
Фрактазм – самостоятельная точная наука изучения и составления фракталов. Большинство фракталов, которые мы видим сегодня, красиво раскрашены. Возможно фрактальные изображения получили такое большое эстетическое значение именно благодаря своим цветовым схемам.
Динамические, или алгебраические фракталы
Следует отметить, что все алгоритмы расчета фрактальной размерности основаны на степенных законах. Такого рода зависимости характерны для фракталов и являются математическим выражением их свойства самоподобия. Однако это свойство у реальных природных фракталов выполняется лишь на некотором конечном характерном диапазоне масштабов, вне этого диапазона самоподобие и фрактальные свойства пропадают.
Природа создаёт удивительные и прекрасные манимейкинг, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи. Для начала давайте изучим исходный текст построения стандартного вида фрактала Julia Set. Большая часть из предствленных здесь фракталов – Julia Set.
Языком математики: динамические (алгебраические) фракталы
Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью.
Но сейчас, после грехопадения, он, если можно так сказать, затемнен, помутнен. Однако если бы мы вовсе утратили образ Творца, то перестали бы быть людьми. У каждого в той или иной мере остаются черты образа Божиего.
Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены четыре первых шага этой процедуры для кривой Коха.
О построении фракталов
Как бы детально мы ни рассматривали фрактальное изображение, мы все время будем видеть схожий рисунок. Чтобы получить полное представление о таком множестве, нужно проделать огромное количество вычислений — сотни, тысячи, миллионы. Вручную это сделать было просто нереально. Но когда в распоряжении математиков появились мощные вычислительные устройства, они смогли по-новому взглянуть на формулы и выражения, которые давно вызывали интерес. Мандельброт был первым, кто использовал компьютер для просчета классического фрактала. Обработав последовательность, состоящую из большого количества значений, Бенуа перенес результаты на график.
Фракталы на биржевых графиках
Форма листа папоротника является классическим примером фрактала. Бенуа́ Мандельбро́т (фр. Benoît B. Mandelbrot; 20 ноября 1924, Варшава — 14 октября 2010, Кембридж) — французский и американский математик, создатель фрактальной геометрии. Бенуа являлся профессором математических наук, почетным преподавателем Йельского Университета, научным сотрудником компании «IBM». Упаковка Лейбница похожа на более известный фрактал – Аполлониеву Сеть. Представляет она собой бесконечное количество окружностей вместе с их предельными точками. Этот фрактал назван в честь Аполлония Пергского – древнегреческого математика, жившего в III в.
В своей пространственной форме, губка Серпинского преобразуется в систему сквозных форм, в которой каждый сквозной элемент постоянно заменяется себе подобным. Эта структура очень похожа на разрез костной ткани. Когда-нибудь такие повторяющиеся структуры станут элементом строительных конструкций. Их статика и динамика, считает Мандельброт, заслуживает пристального изучения. Нельзя обойти стороной и применения фракталов в самой математике. Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами, например фрактальные облака из 3D studio MAX, фрактальные горы в World Builder.
Люди зашли еще дальше, «скрестив» фрактальную геометрию с текстуальной, структурной и семантической природой. А эти фигуры уже выходят за рамки геометрии. Многоуровневое самоподобие ищи в стихах, музыке, изобразительном искусстве. Сказка «Репка», где «бабка за дедку, внучка за бабку, а Жучка за внучку» — яркий тому пример. Внепространственные фракталы также применяются в разделении общества на группы, организации поселений, социокультурной сфере. Бесконечные фигуры часто используются в дизайне, художественном искусстве, архитектуре.
Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная https://forex-helper.ru/а, разглядеть которую нам помогают фракталы. Природа — лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее.
Построения геометрических фракталов
Используя фракталы, которые начинались с треугольников, он создал удивительно реалистичный горный хребет. Превосходные бесплатные инструменты для создания трехмерных фракталов, таких как устрашающая Оболочка Мандельброта, загадочная «коробка» Мандельбокс и др. Mandelbulber несколько более функционален и быстр, но Mandelbulb3D чуть проще в использовании.
После того, как уравнение посчитано, компьютер анализирует результаты. Если результаты остаются стабильными, или колеблются вокруг определенного значения, точка обычно принимает черный цвет. Если значение на том или ином шаге стремится к бесконечности, точку закрашивают в другой цвет, может быть в синий или красный. Во время этого процесса, компьютер назначает цвета для всех скоростей движения. Плоскость, состоящая из всех пар , может рассматриваться, как при фиксированных значениях р и q, так и при динамических.
Для ученых это, конечно, больше, чем просто красивая картинка, но сейчас не об этом. Лет назад, было невозможно измерить с точностью самой малой единицы измерения. Например, береговые линии, представляющие собой природный фрактал. Фрактальная геометрия сломала древние, используемые и в наши дни, постулаты и представления о геометрической структуре мира.
Фракталы подобны самим себе, они похожи сами на себя на всех уровнях (т.е. в любом масштабе). Существует много различных типов фракталов. В принципе, можно утверждать, что всё, что существует в реальном мире, является фракталом, будь то облако или молекула кислорода. Изучение естественных фрактальных структур дает нам возможность глубже понять процессы самоорганизации и развития нелинейных систем. Мы уже выяснили, что естественные фракталы самых различных, извилистых линий встречаются повсюду вокруг нас. Это берег моря, деревья, облака, разряд молнии, структура металла, нервная или сосудистая система человека.
Recent Comments